3.8 Article

Simultaneous Increase of H-2 and Gasoline Production by Optimizing Thermally Coupled Methanol Steam Reforming with Fischer-Tropsch Synthesis

Journal

CHEMICAL PRODUCT AND PROCESS MODELING
Volume 13, Issue 4, Pages -

Publisher

WALTER DE GRUYTER GMBH
DOI: 10.1515/cppm-2017-0079

Keywords

hydrogen production; GTL technology; methanol steam reforming; membrane reactor; DE optimization technique

Ask authors/readers for more resources

The worldwide growing of gaseous pollutions amount has attracted a great deal of attention for development of clean energy resources like hydrogen. Recently, methanol steam reforming (MSR) has been considered as an effective method for hydrogen production compared to other fuels for reforming. Indeed, advantages of methanol such as its good accessibility and properties like its low boiling point and low probability of coke formation as well as high hydrogen to carbon ratio encourage utilizing this substance in reforming process. Therefore, in this work, MSR as an endothermic reaction has been innovatively coupled with Fischer-Tropsch (FT) exothermic synthesis in order to enhance the yield of hydrogen and gasoline production. Presence of membrane in the proposed thermally coupled membrane reactor (TCMR) promotes H-2 separation as the desired product. A homogeneous one-dimensional steady- state model was considered in the present work. Differential evolution (DE) optimization technique was used to optimize feed molar flow rates and inlet temperatures in both endothermic and exothermic reaction sides with the aim of maximizing gasoline and H-2 yields (in both sides). Results show 42.1 % increase in gasoline yield production and simultaneously high H2 production yield of 68.5 % in exothermic side compared with the industrial FT reactor that is considered as conventional reactor (CR). Moreover, the suggested configuration can be considered as an energy and cost effective strategy as a result of supplying required energy for endothermic section by generated heat in the exothermic side.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available