4.0 Article

Biodegradation Kinetics of Naphthalene in Soil Medium Using Pleurotus Ostreatus in Batch Mode with Addition of Fibrous Biomass as a Nutrient

Journal

BIOREMEDIATION JOURNAL
Volume 16, Issue 3, Pages 177-184

Publisher

TAYLOR & FRANCIS INC
DOI: 10.1080/10889868.2012.687417

Keywords

biodegradation; contaminated soil treatment; naphthalene; oil palm fiber; Pleurotus ostreatus

Funding

  1. Ministry of Science, Technology and Innovation, Malaysia

Ask authors/readers for more resources

The efficiency and kinetics of naphthalene biodegradation in a soil medium using Pleurotus ostreatus (a type of white rot fungus) in batch mode with and without the addition of oil palm fiber (OPF) as a nutrient are evaluated in this study. Three batches are considered in the biodegradation study: (i) control-spiked soil; (ii) spiked soil with fungus; and (iii) spiked soil with both fungus and OPF. Biodegradation is conducted over a period of 22 days for which soil naphthalene concentrations are determined with respect to microwave extraction and high-performance liquid chromatography (HPLC) analysis. The results indicate that inoculation with Pleurotus ostreatus significantly enhances soil naphthalene biodegradation to 84%, which is further enhanced upon the addition of OPF to 98% with respect to the degradation rate. The high carbon content in OPF (>40%) affords it the capacity to be a viable nutrient supplement for Pleurotus ostreatus, thereby enhancing the potential of Pleurotus ostreatus in the biodegradation of polycylic aromatic hydrocarbons (PAHs), and indicating the potential of OPF as a nutrient for PAH biodegradation. A relationship between OPF mass and the biodegradation rate constant has been determined to be linear according to the following equation: k = 0.0429 x OPF + 0.1291.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.0
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available