4.7 Article

Ab initio molecular dynamics simulation of liquid water by quantum Monte Carlo

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 142, Issue 14, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.4917171

Keywords

-

Funding

  1. European Research Council of the European Union [240624]
  2. CINECA, PRACE infrastructure [2013081585]

Ask authors/readers for more resources

Although liquid water is ubiquitous in chemical reactions at roots of life and climate on the earth, the prediction of its properties by high-level ab initio molecular dynamics simulations still represents a formidable task for quantum chemistry. In this article, we present a room temperature simulation of liquid water based on the potential energy surface obtained by a many-body wave function through quantum Monte Carlo (QMC) methods. The simulated properties are in good agreement with recent neutron scattering and X-ray experiments, particularly concerning the position of the oxygen-oxygen peak in the radial distribution function, at variance of previous density functional theory attempts. Given the excellent performances of QMC on large scale supercomputers, this work opens new perspectives for predictive and reliable ab initio simulations of complex chemical systems. (C) 2015 AIP Publishing LLC.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available