4.7 Article

Molecular simulation of translational and rotational diffusion of Janus nanoparticles at liquid interfaces

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 142, Issue 1, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.4904549

Keywords

-

Funding

  1. Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]
  2. Rutgers School of Engineering Computing Center

Ask authors/readers for more resources

We perform molecular dynamics simulations to understand the translational and rotational diffusion of Janus nanoparticles at the interface between two immiscible fluids. Considering spherical particles with different affinity to fluid phases, both their dynamics as well as the fluid structure around them are evaluated as a function of particle size, amphiphilicity, fluid density, and interfacial tension. We show that as the particle amphiphilicity increases due to enhanced wetting of each side with its favorite fluid, the rotational thermal motion decreases. Moreover, the in-plane diffusion of nanoparticles at the interface becomes slower for more amphiphilic particles, mainly due to the formation of a denser adsorption layer. The particles induce an ordered structure in the surrounding fluid that becomes more pronounced for highly amphiphilic nanoparticles, leading to increased resistance against nanoparticle motion. A similar phenomenon is observed for homogeneous particles diffusing in bulk upon increasing their wettability. Our findings can provide fundamental insight into the dynamics of drugs and protein molecules with anisotropic surface properties at biological interfaces including cell membranes. (C) 2015 AIP Publishing LLC.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available