4.2 Article

Real-space refinement with DireX: From global fitting to side-chain improvements

Journal

BIOPOLYMERS
Volume 97, Issue 9, Pages 687-697

Publisher

WILEY-BLACKWELL
DOI: 10.1002/bip.22046

Keywords

Cryo-EM; DireX; low resolution; flexible fitting; real-space refinement

Ask authors/readers for more resources

Single-particle cryo-electron microscopy (cryo-EM) has become an important tool to determine the structure of large biomolecules and assemblies thereof. However, the achievable resolution varies considerably over a wide range of about 3.520 angstrom. The interpretation of these intermediate- to low-resolution density maps in terms of atomic models is a big challenge and an area of active research. Here, we present our real-space structure refinement program DireX, which was developed primarily for cryo-EM-derived density maps. The basic principle and its main features are described. DireX employs Deformable Elastic Network (DEN) restraints to reduce overfitting by decreasing the effective number of degrees of freedom used in the refinement. Missing or reduced density due to flexible parts of the protein can lead to artifacts in the structure refinement, which is addressed through the concept of restrained grouped occupancy refinement. Furthermore, we describe the performance of DireX in the 2010 Cryo-EM Modeling Challenge, where we chose six density maps of four different proteins provided by the Modeling Challenge exemplifying typical refinement results at a large resolution range from 3 to 23 angstrom. (c) 2012 Wiley Periodicals, Inc. Biopolymers 97: 687697, 2012.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available