4.8 Article

Chemical Oxidation of Polymer Electrodes for Redox Active Devices: Stabilization through Interfacial Interactions

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 10, Issue 1, Pages 970-978

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsami.7b14650

Keywords

conducting polymers; redox chemistry; doping; electrochemical device; electrochromism

Funding

  1. NXN Licensing
  2. Air Force Office of Scientific Research [FA9550-14-1-0271]

Ask authors/readers for more resources

To achieve optimal performance in a conjugated polymer-based electrochemical device, i.e. for a supercapacitor to reach full depth of discharge or for an electrochromic device (ECD) to achieve maximum contrast, the two electrodes must be in different oxidation states when the device is assembled. Here, we evaluate the use of chemical oxidation as a scalable postprocessing method to adjust the redox state of polymer-coated electrodes. We evaluate how the extent of oxidation depends on both the redox properties of the conjugated polymer and on the choice of chemical oxidant, and how these parameters affect the functionality of the film. Comparing Ag(I) and Fe(III) oxidants, we find that it is not the oxidizing power that determines the extent of doping but rather the redox potentials of the polymers, with the more easily oxidized polymers doping to a higher extent. Because the polarity and surface energy of the polymer changes upon oxidation, we also show how a phosphonic acid surface pre-treatment improves interfacial adhesion between the polymer and a transparent oxide electrode (ITO). Finally, as a proof of principle, we demonstrate how chemical oxidation of the organic counter electrode a minimally color changing dioxypyrrole polymer enhances the device contrast of an ECD, confirming that this approach is a promising route toward high-throughput manufacturing of ECDs and other polymer-based electrochemical devices.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available