4.7 Article

The VLA/ALMA Nascent Disk and Multiplicity (VANDAM) Survey of Perseus Protostars. VI. Characterizing the Formation Mechanism for Close Multiple Systems

Journal

ASTROPHYSICAL JOURNAL
Volume 867, Issue 1, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.3847/1538-4357/aae1f7

Keywords

binaries: general; ISM: kinematics and dynamics; ISM: molecules; stars: formation; stars: protostars; techniques: interferometric

Funding

  1. NSF [AST-1616636, AST-1716259, AST-1814762]
  2. Netherlands Organisation for Scientific Research (NWO) [639.041.439]
  3. NASA [NNX14AB38G]

Ask authors/readers for more resources

We present Atacama Large Millimeter/submillimeter Array observations of multiple protostar systems in the Perseus molecular cloud, previously detected by the Karl G. Jansky Very Large Array. We observe 17 close (<600 au separation) multiple systems at 1.3 mm in continuum and five molecular lines (i.e., (CO)-C-12, (CO)-O-18, (CO)-C-13, H2CO, SO) to characterize the circum-multiple environments in which these systems are forming. We detect at least one component in the continuum for the 17 multiple systems. In three systems one companion is not detected, and for two systems the companions are unresolved at our observed resolution. We also detect circum-multiple dust emission toward eight out of nine Class 0 multiples. Circum-multiple dust emission is not detected toward any of the eight Class I multiples. Twelve systems are detected in the dense gas tracers toward their disks/inner envelopes. For these 12 systems, we use the dense gas observations to characterize their formation mechanism. The velocity gradients in the circum-multiple gas are clearly orthogonal to the outflow directions in eight out of the 12 systems, consistent with disk fragmentation. Moreover, only two systems with separations <200 au are inconsistent with disk fragmentation, in addition to the two widest systems (>500 au). Our results suggest that disk fragmentation via gravitational instability is an important formation mechanism for close multiple systems, but further statistics are needed to better determine the relative fraction formed via this method.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available