4.7 Article

Measurements of Higgs boson properties in the diphoton decay channel with 36 fb(-1) of pp collision data at root s=13 TeV with the ATLAS detector

Journal

PHYSICAL REVIEW D
Volume 98, Issue 5, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevD.98.052005

Keywords

-

Funding

  1. ANPCyT, Argentina
  2. YerPhI, Armenia
  3. ARC, Australia
  4. BMWFW, Austria
  5. FWF, Austria
  6. ANAS, Azerbaijan
  7. SSTC, Belarus
  8. CNPq, Brazil
  9. FAPESP, Brazil
  10. NSERC, Canada
  11. NRC, Canada
  12. CFI, Canada
  13. CERN
  14. CONICYT, Chile
  15. CAS, China
  16. MOST, China
  17. NSFC, China
  18. COLCIENCIAS, Colombia
  19. MSMT CR, Czech Republic
  20. MPO CR, Czech Republic
  21. VSC CR, Czech Republic
  22. DNRF, Denmark
  23. DNSRC, Denmark
  24. IN2P3-CNRS, France
  25. CEA-DRF/IRFU, France
  26. SRNSFG, Georgia
  27. BMBF, Germany
  28. HGF, Germany
  29. MPG, Germany
  30. GSRT, Greece
  31. RGC, Hong Kong SAR, China
  32. ISF, Israel
  33. I-CORE, Israel
  34. Benoziyo Center, Israel
  35. INFN, Italy
  36. MEXT, Japan
  37. JSPS, Japan
  38. CNRST, Morocco
  39. NWO, Netherlands
  40. RCN, Norway
  41. MNiSW, Poland
  42. NCN, Poland
  43. FCT, Portugal
  44. MNE/IFA, Romania
  45. MES of Russia, Russian Federation
  46. NRC KI, Russian Federation
  47. JINR
  48. MESTD, Serbia
  49. MSSR, Slovakia
  50. ARRS, Slovenia
  51. MIZS, Slovenia
  52. DST/NRF, South Africa
  53. MINECO, Spain
  54. SRC, Sweden
  55. Wallenberg Foundation, Sweden
  56. SERI, Switzerland
  57. SNSF, Switzerland
  58. Canton of Bern, Switzerland
  59. Canton of Geneva, Switzerland
  60. MOST, Taiwan
  61. TAEK, Turkey
  62. STFC, United Kingdom
  63. DOE, United States of America
  64. NSF, United States of America
  65. BCKDF, Canada
  66. Canada Council, Canada
  67. CANARIE, Canada
  68. CRC, Canada
  69. Compute Canada, Canada
  70. FQRNT, Canada
  71. Ontario Innovation Trust, Canada
  72. EPLANET, European Union
  73. ERC, European Union
  74. ERDF, European Union
  75. FP7, European Union
  76. Horizon 202, European Union
  77. Marie Sklodowska-Curie Actions, European Union
  78. Investissement d'Avenir Labex, France
  79. Investissement Idex, France
  80. ANR, France
  81. Region Auvergne, France
  82. Fondation Partager le Savoir, France
  83. DFG, Germany
  84. AvH Foundation, Germany
  85. Herakleitos programme - EU-ESF,
  86. Thales programme - EU-ESF
  87. Aristeia programme - EU-ESF
  88. Greek NSRF
  89. BSF, Israel
  90. GIF, Israel
  91. Minerva, Israel
  92. BRF, Norway
  93. CERCA Programme Generalitat de Catalunya, Generalitat Valenciana, Spain
  94. Royal Society, United Kingdom
  95. Leverhulme Trust, United Kingdom
  96. STFC [ST/J004804/1, ST/J005533/1, ST/N000420/1, ST/N000307/1, ST/M000753/1, ST/N000447/1, ST/L003449/1, ST/K001329/1, ST/L006162/1, ST/N000277/1] Funding Source: UKRI
  97. Division Of Physics [1624739] Funding Source: National Science Foundation

Ask authors/readers for more resources

Properties of the Higgs boson are measured in the two-photon final state using 36.1 fb(-1) of proton-proton collision data recorded at root s = 13 TeV by the ATLAS experiment at the Large Hadron Collider. Cross-section measurements for the production of a Higgs boson through gluon-gluon fusion, vector-boson fusion, and in association with a vector boson or a top-quark pair are reported. The signal strength, defined as the ratio of the observed to the expected signal yield, is measured for each of these production processes as well as inclusively. The global signal strength measurement of 0.99 +/- 0.14 improves on the precision of the ATLAS measurement at root s = 7 and 8 TeV by a factor of two. Measurements of gluon-gluon fusion and vector-boson fusion productions yield signal strengths compatible with the Standard Model prediction. Measurements of simplified template cross sections, designed to quantify the different Higgs boson production processes in specific regions of phase space, are reported. The cross section for the production of the Higgs boson decaying to two isolated photons in a fiducial region closely matching the experimental selection of the photons is measured to be 55 +/- 10 fb, which is in good agreement with the Standard Model prediction of 64 +/- 2 fb. Furthermore, cross sections in fiducial regions enriched in Higgs boson production in vector-boson fusion or in association with large missing transverse momentum, leptons or top-quark pairs are reported. Differential and double-differential measurements are performed for several variables related to the diphoton kinematics as well as the kinematics and multiplicity of the jets produced in association with a Higgs boson. These differential cross sections are sensitive to higher order QCD corrections and properties of the Higgs boson, such as its spin and CP quantum numbers. No significant deviations from a wide array of Standard Model predictions are observed. Finally, the strength and tensor structure of the Higgs boson interactions are investigated using an effective Lagrangian, which introduces additional CP-even and CP-odd interactions. No significant new physics contributions are observed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available