4.6 Article

Correlated tunneling dynamics of an ultracold Fermi-Fermi mixture confined in a double well

Journal

PHYSICAL REVIEW A
Volume 98, Issue 5, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.98.053614

Keywords

-

Funding

  1. Deutsche Forschungsgemeinschaft (DFG) [SFB 925]

Ask authors/readers for more resources

We unravel the correlated tunneling dynamics of a mass imbalanced few-body Fermi-Fermi mixture upon quenching the tilt of a double well. The nonequilibrium dynamics of both species changes from Rabi oscillations close to the noninteracting limit to a delayed tunneling dynamics for moderate interspecies repulsions. Considering strong interspecies interactions, the lighter species experiences quantum self-trapping due to the heavier species which acts as an effective material barrier, while performing almost perfect Rabi oscillations. The degree of entanglement, inherent in the system, is analyzed and found to be significant at both moderate and strong repulsions. To relate our findings to possible experimental realizations, we simulate in situ single-shot measurements and discuss how a sampling of such images dictates the observed dynamics. Finally, the dependence of the tunneling behavior on the mass ratio, the particle number in each species, and the height of the barrier of the double well is showcased.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available