4.6 Article

Ultrathin IrRu nanowire networks with high performance and durability for the hydrogen oxidation reaction in alkaline anion exchange membrane fuel cells

Journal

JOURNAL OF MATERIALS CHEMISTRY A
Volume 6, Issue 41, Pages 20374-20382

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c8ta07414c

Keywords

-

Funding

  1. National Natural Science Foundation of China [U1664259]
  2. CAS-DOE Cooperation Project [121421KYSB20160009]

Ask authors/readers for more resources

Developing highly active and stable HOR catalysts still remains a challenging task for alkaline anion exchange membrane fuel cells. A carbon supported IrRu nanowire catalyst with different compositions was prepared by a soft template method, involving the chemical reduction of iridium and ruthenium complexes using sodium borohydride. The Ir1Ru1 ultrathin nanowires exhibit higher hydrogen oxidation activity and better stability under alkaline conditions in comparison with commercial Pt/C. An electrochemical test demonstrates that the mass and specific activities at an over potential of 50 mV of Ir1Ru1 NWs/C are 4.2 and 3.8 times that of commercial Pt/C, respectively. Furthermore, the synthesized Ir1Ru1 NWs display better stability against potential cycling due to their unique interconnected structure. After 2000 potential cycles, the electrochemically active surface area (ECSA) of Ir1Ru1 NWs/C reduces only by 2.27%, and the mass activity@50 mV is reduced by 8.21%. The single cell used the as-prepared Ir1Ru1 NWs/C as the anode catalyst and Pt/C as the cathode catalyst, and the AAEMFC shows a peak power density of more than 485 mW cm(-2), which is about 1.66 fold that of the AAEMFC using commercial Pt/C as the anode catalyst (292 mW cm(-2)). These results suggest that carbon supported ultrathin Ir1Ru1 NW catalysts can be used as substitutes for commercial Pt/C for the HOR in alkaline media for alkaline anion exchange membrane fuel cell application.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available