4.6 Article

Highly Sustainable Zinc Anodes for a Rechargeable Hybrid Aqueous Battery

Journal

CHEMISTRY-A EUROPEAN JOURNAL
Volume 24, Issue 7, Pages 1667-1673

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/chem.201704440

Keywords

batteries; corrosion; dendrites; electroplating; zinc

Funding

  1. Positec Canada Ltd., Mitacs [IT04444, IT06145]

Ask authors/readers for more resources

The synthesis of novel zinc electrodes has been successfully implemented by using the electroplating method with the aid of inorganic additives in the electroplating solution. The selected inorganic additives are indium sulfate, tin oxide, and boric acid. From X-ray diffraction results, these synthesized zinc electrodes prefer (002) and/or (103) crystallographic orientations, representing basal morphology and high resistance to dendrite growth. The corrosion rates of these electroplated zinc samples decrease as much as 11 times smaller than the corrosion rate on zinc foil when the zinc materials are in contact with the aqueous electrolyte of a rechargeable hybrid aqueous battery (ReHAB). The ReHABs employing these anodes exhibit up to a threefold decrease in float charge current density after a seven-day constant-voltage charging at 2.1V versus Zn2+/Zn. Furthermore, the capacity retention is up to 15% higher than the performance of battery containing commercial Zn after 1000 cycles of charge-discharge. The significant advancements are attributed to the careful preparation of the anode, which contains appropriate crystallographic orientation and morphology.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available