4.7 Article

Protocol dependence of plasticity in ultrastable amorphous solids

Journal

PHYSICAL REVIEW E
Volume 98, Issue 6, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.98.063001

Keywords

-

Funding

  1. US-Israel BSF
  2. Israel Science Foundation
  3. Laboratorio Congiunto ADINMAT WIS-Sapienza

Ask authors/readers for more resources

While perfect crystals may exhibit a purely elastic response to shear all the way to yielding, the response of amorphous solids is punctuated by plastic events. The prevalence of this plasticity depends on the number of particles N of the system, with the average strain interval before the first plastic event, (Delta gamma) over bar, scaling like N-alpha with alpha negative: larger samples are more susceptible to plasticity due to more numerous disorder-induced soft spots. In this paper we examine this scaling relation in ultrastable glasses prepared with the swap Monte Carlo algorithm, with regard to the possibility of a protocol-dependent scaling exponent, which would also imply a protocol dependence in the distribution of local yield stresses in the glass. We show that, while a superficial analysis seems to corroborate this hypothesis, this is only a preasymptotic effect and in fact our data can be well explained by a simple model wherein such protocol dependence is absent.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available