4.5 Article

Distinctive Solvation Patterns Make Renal Osmolytes Diverse

Journal

BIOPHYSICAL JOURNAL
Volume 105, Issue 9, Pages 2166-2174

Publisher

CELL PRESS
DOI: 10.1016/j.bpj.2013.09.019

Keywords

-

Categories

Funding

  1. National Institute of General Medical Sciences (NIGMS) of the National Institutes of Health [R01-GM049760, P41-GM103311]

Ask authors/readers for more resources

The kidney uses mixtures of five osmolytes to counter the stress induced by high urea and NaCl concentrations. The individual roles of most of the osmolytes are unclear, and three of the five have not yet been thermodynamically characterized. Here, we report partial molar volumes and activity coefficients of glycerophosphocholine (GPC), taurine, and myo-inositol. We derive their salvation behavior from the experimental data using Kirkwood-Buff theory. We also provide their solubility data, including solubility data for scyllo-inositol. It turns out that renal osmolytes fall into three distinct classes with respect to their solvation. Trimethyl-amines (GPC and glycine-betaine) are characterized by strong hard-sphere-like self-exclusion; urea, taurine, and myo-inositol have a tendency toward self-association; sorbitol and most other nonrenal osmolytes have a relatively constant, intermediate solvation that has components of both exclusion and association. The data presented here show that renal osmolytes are quite diverse with respect to their solvation patterns, and they can be further differentiated based on observations from experiments examining their effect on macromolecules. It is expected, based on the available surface groups, that each renal osmolyte has distinct effects on various classes of biomolecules. This likely allows the kidney to use specific combinations of osmolytes independently to fine-tune the chemical activities of several types of molecules.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available