4.5 Article

Global Transitions of Proteins Explored by a Multiscale Hybrid Methodology: Application to Adenylate Kinase

Journal

BIOPHYSICAL JOURNAL
Volume 105, Issue 7, Pages 1643-1652

Publisher

CELL PRESS
DOI: 10.1016/j.bpj.2013.07.058

Keywords

-

Categories

Funding

  1. NIH [P41-GM103712, R01-GM099738-02]
  2. Direct For Mathematical & Physical Scien
  3. Division Of Chemistry [1126465] Funding Source: National Science Foundation

Ask authors/readers for more resources

Efficient and accurate mapping of transition pathways is a challenging problem in allosteric proteins. We propose here a to our knowledge new methodology called collective molecular dynamics (coMD). coMD takes advantage of the collective modes of motions encoded by the fold, simultaneously evaluating the interactions and energetics via a full-atomic MD simulation protocol. The basic approach is to deform the structure collectively along the modes predicted by the anisotropic network model, upon selecting them via a Monte Carlo/Metropolis algorithm from among the complete pool of all accessible modes. Application to adenylate kinase, an allosteric enzyme composed of three domains, CORE, LID, and NMP, shows that both open-to-closed and closed-to-open transitions are readily sampled by coMD, with large-scale motions of the LID dominating. An energy-barrier crossing occurs during the NMP movements. The energy barrier originates from a switch between the salt bridges K136-D118 at the LID-CORE interface and K57-E170 and D33-R156 at the CORE-NMP and LID-NMP interfaces, respectively. Despite its simplicity and computing efficiency, coMD yields ensembles of transition pathways in close accord with detailed full atomic simulations, lending support to its utility as a multiscale hybrid method for efficiently exploring the allosteric transitions of multidomain or multimeric proteins.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available