4.7 Article

KMT2C Mutations in Diffuse-Type Gastric Adenocarcinoma Promote Epithelial-to-Mesenchymal Transition

Journal

CLINICAL CANCER RESEARCH
Volume 24, Issue 24, Pages 6556-6569

Publisher

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/1078-0432.CCR-17-1679

Keywords

-

Categories

Funding

  1. NIH [1R01 CA158301-01, P30 CA008748]
  2. National Research Foundation, Korea [2016R1A2B1010377]
  3. National Cancer Center, Korea [1610160-2]
  4. NATIONAL CANCER INSTITUTE [T32CA009501, R01CA158301, P30CA008748] Funding Source: NIH RePORTER

Ask authors/readers for more resources

Purpose: Lauren diffuse-type gastric adenocarcinomas (DGAs) are generally genomically stable. We identified lysine (K)-specific methyltransferase 2C (KMT2C) as a frequently mutated gene and examined its role in DGA progression. Experimental Design: We performed whole exome sequencing on tumor samples of 27 patients with DGA who underwent gastrectomy. Lysine (K)-specific methyltransferase 2C (KMT2C) was analyzed in DGA cell lines and in patient tumors. Results: KMT2C was the most frequently mutated gene (11 of 27 tumors [41%]). KMT2C expression by immunohistochemistry in tumors from 135 patients with DGA undergoing gastrectomy inversely correlated with more advanced tumor stage (P = 0.023) and worse overall survival (P = 0.017). KMT2C shRNA knockdown in non-transformed HFE-145 gastric epithelial cells promoted epithelial-to-mesenchymal transition (EMT) as demonstrated by increased expression of EMT-related proteins N-cadherin and Slug. Migration and invasion in gastric epithelial cells following KMT2C knockdown increased by 47- to 88-fold. In the DGA cell lines MKN-45 and SNU-668, which have lost KMT2C expression, KMT2C re-expression decreased expression of EMT-related proteins, reduced cell migration by 52% to 60%, and reduced cell invasion by 50% to 74%. Flank xenografts derived from KMT2C-expressing DGA organoids, compared with wild-type organoids, grew more slowly and lost their infiltrative leading edge. EMT can lead to the acquisition of cancer stem cell (CSC) phenotypes. KMT2C re-expression in DGA cell lines reduced spheroid formation by 77% to 78% and reversed CSC resistance to chemotherapy via promotion of DNA damage and apoptosis. Conclusions: KMT2C is frequently mutated in certain populations with DGA. KMT2C loss in DGA promotes EMT and is associated with worse overall survival. (C) 2018 AACR.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available