4.8 Article

Novel Eco-Friendly Starch Paper for Use in Flexible, Transparent, and Disposable Organic Electronics

Journal

ADVANCED FUNCTIONAL MATERIALS
Volume 28, Issue 3, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.201704433

Keywords

biodegradability; disposal organic electronics; eco-friendly electronics; flexible electronics; starch paper

Funding

  1. Basic Science Research Program through the National Research Foundation of Korea (NRF) - Ministry of Education [NRF-2016R1D1A1B03936094]

Ask authors/readers for more resources

An eco-friendly biodegradable starch paper is introduced for use in next generation disposable organic electronics without the need for a planarizing layer. The starch papers are formed by starch gelatinization using a very small amount of 0.5 wt% polyvinyl alcohol (PVA), a polymer that bound to the starch, and 5 wt% of a crosslinker that bound to the PVA to improve mechanical properties. This process minimizes the additions of synthetic materials. The resultant starch paper provides a remarkable mechanical strength and stability under repeated movements. Robustness tests using various chemical solvents are conducted by immersing the starch paper for 6 h. Excellent nonpolar solvent stabilities are observed. They are important for the manufacture of organic electronics that use nonpolar solution processes. The applicability of the starch paper as a flexible substrate is tested by fabricating flexible organic transistors using pentacene, dinaphtho[2,3-b:2 ',3 '-f]thieno[3,2-b]thiophene, and poly(dimethyl-triarylamine) using both vacuum and solution processes. Electrically well-behaved device performances are identified. Finally, the eco-friendly biodegradability is verified by subjecting the starch paper to complete degradation by fungi in fishbowl water over 24 d. These developments illuminate new research areas in the field of biodegradable green electronics, enabling the development of extremely low-cost electronics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available