4.2 Article

Interferon Consensus Sequence-Binding Protein 8, a Tumor Suppressor, Suppresses Tumor Growth and Invasion of Non-Small Cell Lung Cancer by Interacting with the Wnt/-Catenin Pathway

Journal

CELLULAR PHYSIOLOGY AND BIOCHEMISTRY
Volume 51, Issue 2, Pages 961-978

Publisher

KARGER
DOI: 10.1159/000495399

Keywords

IRF8; NSCLC; Tumor suppressor; CpG methylation; TCF; LEF; Wnt; -catenin

Funding

  1. Major Projects of International Cooperation and Exchanges, National Natural Science Foundation of China [31420103915]
  2. National Natural Science Foundation of China [81572769, 81772869]
  3. VC special research fund from The Chinese University of Hong Kong
  4. Natural Science Foundation
  5. Yuzhong District Commission of science and technology of Chongqing, China [20170831-18]

Ask authors/readers for more resources

Background/Aims: Interferon consensus sequence-binding protein 8 (IRF8) belongs to a family of interferon (IFN) regulatory factors that modulates various important physiological processes including carcinogenesis. As reported by others and our group, IRF8 expression is silenced by DNA methylation in both human solid tumors and hematological malignancies. However, the role of IRF8 in lung carcinoma remains elusive. In this study, we determined IRF8 epigenetic regulation, biological functions, and the signaling pathway involved in non-small cell lung cancer (NSCLC). Methods: IRF8 expression were determined by Q- PCR. MSP and A+T determined promotor methylation. MTS, clonogenic, Transwell assay, Flow cytometry, three-dimensional culture and AO/EB stain verified cell function. In vivo tumorigenesis examed the in vivo effects. By Chip-QPCR, RT-PCR, Western blot and Immunofluorescence staining, the mechanisms were studied. Results: IRF8 was significantly downregulated in lung tumor tissues compared with adjacent non-cancerous tissues. Furthermore, methylation-specific PCR analyses revealed that IRF8 methylation in NSCLC was a common event, and demethylation reagent treatment proved that downregulation of IRF8 was due to its promoter CpG hypermethylation. Clinical data showed that the IRF8 methylation was associated with tumor stage, lymph node metastasis status, patient outcome, and tumor histology. Exogenous expression of IRF8 in the silenced or downregulated lung cancer cell lines A549 and H1299 at least partially restored the sensitivity of lung cancer cells to apoptosis, and arrested cells at the G0/G1 phase. Cell viability, clonogenicity, and cell migration and invasive abilities were strongly inhibited by restored expression of IRF8. A three-dimensional culture system demonstrated that IRF8 changed the cells to a more spherical phenotype. Moreover, ectopic expression of IRF8 enhanced NSCLC chemosensitivity to cisplatin. Furthermore, as verified by Chip-qPCR, immunofluorescence staining, and western blotting, IRF8 bound to the T-cell factor/lymphoid enhancer factor (TCF /LEF) promoter, thus repressing -catenin nuclear translocation and its activation. IRF8 significantly disrupted the effects of Wnt agonist, bml284, further suggesting its involvement in the Wnt/-catenin pathway. Conclusion: IRF8 acted as a tumor suppressor gene through the transcriptional repression of -catenin-TCF/LEF in NSCLC. IRF8 methylation may serve as a potential biomarker in NSCLC prognosis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available