4.7 Article

Phase field modelling of strain induced crystal growth in an elastic matrix

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 142, Issue 24, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.4923226

Keywords

-

Funding

  1. cluster de recherche ARC ENERGIES from the Region Rhone-Alpes, France

Ask authors/readers for more resources

When a crystal phase grows in an amorphous matrix, such as a crystallisable elastomer, containing cross-links and/or entanglements, these topological constraints need to be pushed away from the crystal phase to allow further crystallization. The accumulation of these topological constraints in the vicinity of the crystal interface may store elastic energy and affect the phase transition. To evaluate the consequences of such mechanism, we introduce a phase field model based on the Flory theory of entropic elasticity. We show that the growth process is indeed sensibly affected, in particular, an exponential increase of the surface energy with the displacement of the interface is induced. This explains the formation of stable nano-crystallites as it is observed in the Strain Induced Crystallization (SIC) of natural rubber. Although simple, the model developed here is able to account for many interesting features of SIC, for instance, the crystallite shapes and their sizes which depend on the applied deformation. (C) 2015 AIP Publishing LLC.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available