4.6 Article

Formation of cluster crystals in an ultra-soft potential model on a spherical surface

Journal

SOFT MATTER
Volume 14, Issue 43, Pages 8724-8739

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c8sm00997j

Keywords

-

Ask authors/readers for more resources

We investigate the formation of cluster crystals with multiply occupied lattice sites on a spherical surface in systems of ultra-soft particles interacting via repulsive, bounded pair potentials. Not all interactions of this kind lead to clustering: we generalize the criterion devised in C. N. Likos et al., Phys. Rev. E, 2001, 63, 031206 to spherical systems in order to distinguish between cluster-forming systems and fluids which display reentrant melting. We use both DFT and Monte Carlo simulations to characterize the behavior of the system, and obtain semi-quantitative agreement between the two. We find that the number of clusters is determined by the ratio between the size sigma of the ultra-soft particles and the radius R of the sphere in such a way that each stable configuration spans a certain interval of sigma/R. Furthermore, we study the effect of topological frustration on the system due to the sphere curvature by comparing the properties of disclinations, i.e., clusters with fewer than six neighbors, and non-defective clusters. Disclinations are shown to be less stable, contain fewer particles, and be closer to their neighbors than other lattice points: these properties are explained on the basis of geometric and energetic considerations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available