4.5 Article

Characterization of Dark Quencher Chromophores as Nonfluorescent Acceptors for Single-Molecule FRET

Journal

BIOPHYSICAL JOURNAL
Volume 102, Issue 11, Pages 2658-2668

Publisher

CELL PRESS
DOI: 10.1016/j.bpj.2012.04.028

Keywords

-

Categories

Funding

  1. European Commission [HEALTH-F4-2008-201418]
  2. Biotechnology and Biological Research Council [BB/H01795X/1]
  3. European Research Council [261227]
  4. European Research Council (ERC) [261227] Funding Source: European Research Council (ERC)
  5. Biotechnology and Biological Sciences Research Council [BB/H01795X/1] Funding Source: researchfish
  6. BBSRC [BB/H01795X/1] Funding Source: UKRI

Ask authors/readers for more resources

Dark quenchers are chromophores that primarily relax from the excited state to the ground state nonradiatively (i.e., are dark). As a result, they can serve as acceptors for Forster resonance energy transfer experiments without contributing significantly to background in the donor-emission channel, even at high concentrations. Although the advantages of dark quenchers have been exploited for ensemble bioassays, no systematic single-molecule study of dark quenchers has been performed, and little is known about their photophysical properties. Here, we present the first systematic single-molecule study of dark quenchers in conjunction with fluorophores and demonstrate the use of dark quenchers for monitoring multiple interactions and distances in multichromophore systems. Specifically, using double-stranded DNA standards labeled with two fluorophores and a dark quencher (either QSY7 or QSY21), we show that the proximity of a fluorophore and dark quencher can be monitored using the stoichiometry ratio available from alternating laser excitation spectroscopy experiments, either for single molecules diffusing in solution (using a confocal fluorescence) or immobilized on surfaces (using total-internal-reflection fluorescence). The latter experiments allowed characterization of the dark-quencher photophysical properties at the single-molecule level. We also use dark-quenchers to study the affinity and kinetics of binding of DNA Polymerase I (Klenow fragment) to DNA. The measured properties are in excellent agreement with the results of ensemble assays, validating the use of dark quenchers. Because dark-quencher-labeled biomolecules can be used in total-internal-reflection fluorescence experiments at concentrations of 1 mu M or more without introducing a significant background, the use of dark quenchers should permit single-molecule Forster resonance energy transfer measurements for the large number of biomolecules that participate in interactions of moderate-to-low affinity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available