4.5 Article

Nanoparticle Diffusion Measures Bulk Clot Permeability

Journal

BIOPHYSICAL JOURNAL
Volume 101, Issue 4, Pages 943-950

Publisher

CELL PRESS
DOI: 10.1016/j.bpj.2011.06.052

Keywords

-

Categories

Funding

  1. National Institutes of Health [5-P41-RR02025-21, P41-EB002025]

Ask authors/readers for more resources

A clot's function is to achieve hemostasis by resisting fluid flow. Permeability is the measurement of a clot's hemostatic potential. It is sensitive to a wide range of biochemical parameters and pathologies. In this work, we consider the hydrodynamic phenomenon that reduces the mobility of fluid near the fiber surfaces. This no-slip boundary condition both defines the gel's permeability and suppresses nanoparticle diffusion in gel interstices. Here we report that, unlike previous work where steric effects also hindered diffusion, our system-nanoparticles in fibrin gel-was subject exclusively to hydrodynamic diffusion suppression. This result enabled an automated, high-throughput permeability assay that used small clot volumes. Permeability was derived from nanoparticle diffusion using the effective medium theory, and showed one-to-one correlation with measured permeability. This technique measured permeability without quantifying gel structure, and may therefore prove useful for characterizing similar materials (e.g., extracellular matrix) where structure is uncontrolled during polymerization and difficult to measure subsequently. We also report that PEGylation reduced, but did not eliminate, the population of immobile particles. We studied the forces required to pull stuck PEG particles free to confirm that the attachment is a result of neither covalent nor strong electrostatic binding, and discuss the relevance of this force scale to particle transport through physiological clots.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available