4.5 Article

Enantiospecificity of Chloroperoxidase-Catalyzed Epoxidation: Biased Molecular Dynamics Study of a Cis-β-Methylstyrene/Chloroperoxidase-Compound I Complex

Journal

BIOPHYSICAL JOURNAL
Volume 100, Issue 4, Pages 1066-1075

Publisher

CELL PRESS
DOI: 10.1016/j.bpj.2010.12.3729

Keywords

-

Categories

Funding

  1. National Institutes of Health [SC3GM083273]

Ask authors/readers for more resources

Molecular dynamics simulations of an explicitly solvated cis-beta-methylstyrene/chloroperoxidase-Compound I complex are performed to determine the cause of the high enantiospecificity of epoxidation. From the simulations, a two-dimensional free energy potential is calculated to distinguish binding potential wells from which reaction to 1S2R and 1R2S epoxide products may occur. Convergence of the free energy potential is accelerated with an adaptive biasing potential. Analysis of binding is followed by analysis of 1S2R and 1R25 reaction precursor structures in which the substrate, having left the binding wells, places its reactive double bond in steric proximity to the oxyferryl heme center. Structural analysis of binding and reaction precursor conformations is presented. We find that 1), a distortion of Glu(183) is important for CPO-catalyzed epoxidation as was postulated previously based on experimental results; 2), the free energy of binding does not provide significant differentiation between structures leading to the respective epoxide enantiomers; and 3), CPO's enantiospecificity toward cis-beta-methylstyrene is likely to be caused by a specific group of residues which form a hydrophobic core surrounding the oxyferryl heme center.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available