4.8 Article

Chlorogenic acid effectively treats cancers through induction of cancer cell differentiation

Journal

THERANOSTICS
Volume 9, Issue 23, Pages 6745-6763

Publisher

IVYSPRING INT PUBL
DOI: 10.7150/thno.34674

Keywords

chlorogenic acid; cancer differentiation; SUMO1; c-Myc; p21

Funding

  1. State Key Laboratory of Bioactive Substance and Function of Natural Medicines [GTZA201404, GTZC201227]
  2. National Natural Science Foundation [81621064]
  3. CAMS Innovation Fund for Medical Sciences [2016-I2M-1-011, 2017-I2M-1-008, 2017-I2M-BR-09]

Ask authors/readers for more resources

Rationale: Inducing cancer differentiation is a promising approach to treat cancer. Here, we identified chlorogenic acid (CA), a potential differentiation inducer, for cancer therapy, and elucidated the molecular mechanisms underlying its differentiation-inducing effects on cancer cells. Methods: Cancer cell differentiation was investigated by measuring malignant behavior, including growth rate, invasion/migration, morphological change, maturation, and ATP production. Gene expression was analyzed by microarray analysis, qRT-PCR, and protein measurement, and molecular biology techniques were employed for mechanistic studies. LC/MS analysis was the method of choice for chemical detection. Finally, the anticancer effect of CA was evaluated both in vitro and in vivo. Results: Cancer cells treated with CA showed reduced proliferation rate, migration/invasion ability, and mitochondrial ATP production. Treating cancer cells with CA resulted in elevated SUMO] expression through acting on its 3'UTR and stabilizing the mRNA. The increased SUMO] caused c-Myc sumoylation, miR-17 family downregulation, and p21 upregulation leading to G(0)/G(1) arrest and maturation phenotype. CA altered the expression of differentiation-related genes in cancer cells but not in normal cells. It inhibited hepatoma and lung cancer growth in tumor-bearing mice and prevented new tumor development in naive mice. In glioma cells, CA increased expression of specific differentiation biomarkers Tuj1 and GFAP inducing differentiation and reducing sphere formation. The therapeutic efficacy of CA in glioma cells was comparable to that of temozolomide. CA was detectable both in the blood and brain when administered intraperitoneally in animals. Most importantly, CA was safe even at very high doses. Conclusion: CA might be a safe and effective differentiation-inducer for cancer therapy. Educating cancer cells to differentiate, rather than killing them, could be a novel therapeutic strategy for cancer.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available