4.5 Article

MicroRNA-425-5p Expression Affects BRAF/RAS/MAPK Pathways In Colorectal Cancers

Journal

INTERNATIONAL JOURNAL OF MEDICAL SCIENCES
Volume 16, Issue 11, Pages 1480-1491

Publisher

IVYSPRING INT PUBL
DOI: 10.7150/ijms.35269

Keywords

Colorectal carcinoma; KRAS mutation; miR-425-5p expression levels; DICER1 gene; TNFRSF10B gene; PTEN gene

Funding

  1. Fondazione di Sardegna, Italy
  2. Regione Autonoma della Sardegna, Italy [7]
  3. Department of Biomedical Sciences of the University of Sassari
  4. Ministero dell'Istruzione, dell'Universita e della Ricerca (MIUR, Italy) - Progetti di Ricerca di Rilevante Interesse Nazionale - PRIN [20157ATSLF_002]
  5. Consiglio Nazionale delle Ricerche Flagship InterOmics [PB05]

Ask authors/readers for more resources

Colorectal cancer (CRC) is a leading cause of cancer death worldwide and about 20% is metastatic at diagnosis and untreatable. The anti-EGFR therapy in metastatic patients is led by the presence of KRAS-mutations in tumor tissue. KRAS-wild-type CRC patients showed a positive response rate of about 70% to cetuximab or panitumumab combined with chemotherapy. MiRNAs are promising markers in oncology and could improve our knowledge on pathogenesis and drug resistance in CRC patients. This class of molecules represents an opportunity for the development of miRNA-based strategies to overcome the ineffectiveness of anti-EGFR therapy. We performed an integrative analysis of miRNA expression profile between KRAS-mutated CRC and KRAS-wildtype CRC and paired normal colic tissue (NCT). We revealed an overexpression of miR-425-5p in KRAS-mutated CRC compared to KRAS-wild type CRC and NCT and demonstrated that miR-425-5p exerts regulatory effects on target genes involved in cellular proliferation, migration, invasion, apoptosis molecular networks. These epigenetic mechanisms could be responsible of the strong aggressiveness of KRAS-mutated CRC compared to KRAS-wildtype CRC. We proved that some miR-425-5p targeted genes are involved in EGFR tyrosine kinase inhibitor resistance pathway, suggesting that therapies based on miR-425-5p may have strong potential in targeting KRAS-driven CRC. Moreover, we demonstrated a role in the oncogenesis of miR-31-5p, miR-625-5p and miR-579 by comparing CRC versus NCT. Our results underlined that miR-425-5p might act as an oncogene to participate in the pathogenesis of KRAS-mutated CRC and contribute to increase the aggressiveness of this subcategory of CRC, controlling a complex molecular network.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available