4.3 Article

Roles of forkhead box protein L2 (foxl2) during gonad differentiation and maintenance in a fish, the olive flounder (Paralichthys olivaceus)

Journal

REPRODUCTION FERTILITY AND DEVELOPMENT
Volume 31, Issue 11, Pages 1742-1752

Publisher

CSIRO PUBLISHING
DOI: 10.1071/RD18233

Keywords

DNA methylation; high temperature and exogenous sex hormones; gene expression; gonad development

Funding

  1. National Natural Science Foundation of China [31772834, 41276171]
  2. National Key R & D Program of China [2018YFD0900202]
  3. Scientific and Technological Innovation Project - Qingdao National Laboratory for Marine Science and Technology [2015ASKJ02]
  4. National Infrastructure of Fishery Germplasm Resources [2017DKA30470]

Ask authors/readers for more resources

As an important maricultured fish, the olive flounder Paralichthys olivaceus shows sex-dimorphic growth. Thus, the molecular mechanisms involved in sex control in P. olivaceus have attracted researchers' attention. Among the sex-related genes, forkhead box protein L2 (foxl2) exhibits significant sex-dimorphic expression patterns and plays an important role in fish gonad differentiation and development. The present study first investigated the expression levels and promoter methylation dynamics of foxl2 during flounder gonad differentiation under treatments of high temperature and exogenous 17 beta -oestradiol (E2). During high temperature treatment, the expression of flounder foxl2 may be repressed via maintenance of DNA methylation. Then, flounder with differentiated testis at Stages I-II were treated with exogenous 5ppm E2 or 5ppm E2+150ppm trilostane (TR) to investigate whether exogenous sex hormones could induce flounder sex reversal. The differentiated testis exhibited phenotypic variations of gonadal dysgenesis with upregulation of female-related genes (foxl2 and cytochrome P450 family 19 subfamily A (cyp19a)) and downregulation of male-related genes (cytochrome P450 family 11 subfamily B member 2 (cyp11b2), doublesex- and mab-3 related transcription factor 1 (dmrt1), anti-Mullerian hormone (amh) and SRY-box transcription factor 9 (sox9)). Furthermore, a cotransfection assay of the cells of the flounder Sertoli cell line indicated that Foxl2 was able alone or with nuclear receptor subfamily 5 group A member 2 (Nr5a2) jointly to upregulate expression of cyp19a. Moreover, Foxl2 and Nr5a2 repressed the expression of dmrt1. In summary, Foxl2 may play an important role in ovarian differentiation by maintaining cyp19a expression and antagonising the expression of dmrt1. However, upregulation of foxl2 is not sufficient to induce the sex reversal of differentiated testis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available