4.5 Article

310-Helix Conformation Facilitates the Transition of a Voltage Sensor S4 Segment toward the Down State

Journal

BIOPHYSICAL JOURNAL
Volume 100, Issue 6, Pages 1446-1454

Publisher

CELL PRESS
DOI: 10.1016/j.bpj.2011.02.003

Keywords

-

Categories

Funding

  1. European Research Council [209825]
  2. Swedish Foundation for Strategic Research
  3. Swedish Research Council
  4. European Research Council (ERC) [209825] Funding Source: European Research Council (ERC)

Ask authors/readers for more resources

The activation of voltage-gated ion channels is controlled by the S4 helix, with arginines every third residue. The x-ray structures are believed to reflect an open-inactivated state, and models propose combinations of translation, rotation, and tilt to reach the resting state. Recently, experiments and simulations have independently observed occurrence of 3(10)-helix in S4. This suggests S4 might make a transition from alpha- to 3(10)-helix in the gating process. Here, we show 3(10)-helix structure between 01 and R3 in the S4 segment of a voltage sensor appears to facilitate the early stage of the motion toward a down state. We use multiple microsecond-steered molecular simulations to calculate the work required for translating S4 both as a-helix and transformed to 3(10)-helix. The barrier appears to be caused by salt-bridge reformation simultaneous to R4 passing the F233 hydrophobic lock, and it is almost a factor-two lower with 3(10)-helix. The latter facilitates translation because R2/R3 line up to face E183/E226, which reduces the requirement to rotate S4. This is also reflected in a lower root mean-square deviation distortion of the rest of the voltage sensor. This supports the 3(10) hypothesis, and could explain some of the differences between the open-inactivated- versus activated-states.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available