3.8 Article

The effect of ibuprofen on expression of Cox-1/2-related miRNAs in MKN-45-derived cancer stem-like cells

Journal

Publisher

WOLTERS KLUWER MEDKNOW PUBLICATIONS
DOI: 10.4103/jrptps.jrptps_9_18

Keywords

Cancer stem-like cells; hsa-mir-16-5p; hsa-mir-4669; hsa-mir-483-5p; ibuprofen; microRNA

Ask authors/readers for more resources

Context: Ibuprofen is an anti-inflammatory drug that non-selectively blocks cyclooxygenases-1/2 (COX-1/2) enzymes and thus reduces the risk tumorigenesis. This study was designed to detect microRNAs (miRNAs) that target Cox-1/2 mRNA and to investigate the effect of ibuprofen on the expression of the miRNAs in MKN-45-derived gastric cancer stem-like cells (CSLCs). We were also aimed to find signaling pathways modulated by the miRNAs. Subjects and Methods: The miRWalk database was used to recognize miRNAs that targeted Cox-1/2 genes. CSLCs were derived from MKN-45 cell line and were then treated with ibuprofen. Consequently, the effect of ibuprofen was evaluated on the expression of the miRNAs by quantitative real-time polymerase chain reaction (qRT-PCR). Finally, DIANA tools were used to identify signaling pathways that modulated by the miRNAs. Results: Our bioinformatic investigation showed that hsa-mir-16-5p, hsa-mir-483-5p, and hsa-mir-4669 targeted both Cox-1 and Cox-2 mRNAs. The qRT-PCR results indicated that hsa-mir-16-5p and hsa-mir-4669 were overexpressed 2.34 and 9.47 folds, respectively, while hsa-mir-483-5p under-expressed (2.08 folds) in ibuprofen-treated CSLCs relative to untreated cells. Moreover, it found that these miRNAs are involved in PI3K-Akt, P53, transforming growth factor-beta, phosphatidylinositol and insulin signaling pathways, cell cycle, extracellular matrix receptor interaction, gap junction, small cell lung cancer, prostate cancer, and chronic myeloid leukemia. Conclusions: We suggest that ibuprofen may reduce the risk of gastric cancer by affecting the expression of miRNAs that target Cox-1/2. however, further research is necessary to unravel its exact effects.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available