4.2 Article

Convolutional Neural Networks for Automated Fracture Detection and Localization on Wrist Radiographs

Journal

RADIOLOGY-ARTIFICIAL INTELLIGENCE
Volume 1, Issue 1, Pages -

Publisher

RADIOLOGICAL SOC NORTH AMERICA (RSNA)
DOI: 10.1148/ryai.2019180001

Keywords

-

Ask authors/readers for more resources

Purpose: To demonstrate the feasibility and performance of an object detection convolutional neural network (CNN) for fracture detection and localization on wrist radiographs. Materials and Methods: Institutional review board approval was obtained with waiver of consent for this retrospective study. A total of 7356 wrist radiographic studies were extracted from a hospital picture archiving and communication system. Radiologists annotated all radius and ulna fractures with bounding boxes. The dataset was split into training (90%) and validation (10%) sets and used to train fracture localization models for frontal and lateral images. Inception-ResNet Faster R-CNN architecture was implemented as a deep learning model. The models were tested on an unseen test set of 524 consecutive emergency department wrist radiographic studies with two radiologists in consensus as the reference standard. Per-fracture, per-image (ie, per-view), and per-study sensitivity and specificity were determined. Area under the receiver operating characteristic curve (AUC) analysis was performed. Results: The model detected and correctly localized 310 (91.2%) of 340 and 236 (96.3%) of 245 of all radius and ulna fractures on the frontal and lateral views, respectively. The per-image sensitivity, specificity, and AUC were 95.7% (95% confidence interval [CI]: 92.4%, 97.8%), 82.5% (95% CI: 77.4%, 86.8%), and 0.918 (95% CI: 0.894, 0.941), respectively, for the frontal view and 96.7% (95% CI: 93.6%, 98.6%), 86.4% (95% CI: 81.9%, 90.2%), and 0.933 (95% CI: 0.912, 0.954), respectively, for the lateral view. The per-study sensitivity, specificity, and AUC were 98.1% (95% CI: 95.6%, 99.4%), 72.9% (95% CI: 67.1%, 78.2%), and 0.895 (95% CI: 0.870, 0.920), respectively. Conclusion: The ability of an object detection CNN to detect and localize radius and ulna fractures on wrist radiographs with high sensitivity and specificity was demonstrated. (C) RSNA, 2019

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available