4.5 Article

Nanogap Dielectric Spectroscopy for Aptamer-Based Protein Detection

Journal

BIOPHYSICAL JOURNAL
Volume 98, Issue 4, Pages 724-732

Publisher

CELL PRESS
DOI: 10.1016/j.bpj.2009.10.042

Keywords

-

Categories

Ask authors/readers for more resources

Among the various label-free methods for monitoring biomolecular interactions, capacitive sensors standout due to their simple instrumentation and compatibility with multiplex formats. However, electrode polarization due to ion gradient formation and noise from solution conductance limited early dielectric spectroscopic measurements to high frequencies only, which in turn limited their sensitivity to biomolecular interactions, as the applied excitation signals were too fast for the charged macromolecules to respond. To minimize electrode polarization effects, capacitive sensors with 20 nm electrode separation were fabricated using silicon dioxide sacrificial layer techniques The nanoscale separation of the capacitive electrodes in the sensor results in an enhanced overlapping of electrical double layers, and apparently a more ordered ice-like water structure Such effects in turn reduce low frequency contributions from bulk sample resistance and from electrode polarization. and thus markedly enhance sensitivity toward biomolecular interactions Using these nanogap capacitive sensors. highly sensitive, label-free aptamer-based detection of protein molecules is achieved

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available