4.6 Article

Ab Initio Horizon-scale Simulations of Magnetically Arrested Accretion in Sagittarius A* Fed by Stellar Winds

Journal

ASTROPHYSICAL JOURNAL LETTERS
Volume 896, Issue 1, Pages -

Publisher

IOP Publishing Ltd
DOI: 10.3847/2041-8213/ab9532

Keywords

Galactic center; Magnetohydrodynamics; Astrophysical fluid dynamics; Astrophysical black holes; Accretion; General relativity; Wolf-Rayet stars; Stellar winds; Magnetohydrodynamical simulations

Funding

  1. Gordon and Betty Moore Foundation [GBMF7392]
  2. NSF [NSF PHY-1748958, AST-1715054, AST-1715277, TG-AST090038, TGAST170012]
  3. Simons Foundation

Ask authors/readers for more resources

We present 3D general relativistic magnetohydrodynamic (GRMHD) simulations of the accretion flow surrounding Sagittarius A* that are initialized using larger-scale MHD simulations of the similar to 30 Wolf-Rayet (WR) stellar winds in the Galactic center. The properties of the resulting accretion flow on horizon scales are set not by ad hoc initial conditions but by the observationally constrained properties of the WR winds with limited free parameters. For this initial study we assume a non-spinning black hole. Our simulations naturally produce a similar to 10(-8) M yr(-1) accretion rate, consistent with previous phenomenological estimates. We find that a magnetically arrested flow is formed by the continuous accretion of coherent magnetic field being fed from large radii. Near the event horizon, the magnetic field is so strong that it tilts the gas with respect to the initial angular momentum and concentrates the originally quasi-spherical flow to a narrow disk-like structure. We also present 230 GHz images calculated from our simulations where the inclination angle and physical accretion rate are not free parameters but are determined by the properties of the WR stellar winds. The image morphology is highly time variable. Linear polarization on horizon scales is coherent with weak internal Faraday rotation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available