4.8 Article

Metal-organic frameworks derived porous carbon, metal oxides and metal sulfides-based compounds for supercapacitors application

Journal

ENERGY STORAGE MATERIALS
Volume 26, Issue -, Pages 1-22

Publisher

ELSEVIER
DOI: 10.1016/j.ensm.2019.12.019

Keywords

Supercapacitors; Metal-organic frameworks (MOFs); MOF-Derived materials; Porous carbon; Metal oxides; Metal sulfides

Funding

  1. Australian Research Council [DP180100731, DP180100568]

Ask authors/readers for more resources

The energy storage field has witnessed a dramatic expansion in terms of short charging time of supercapacitors, especially in the highly active electrode materials. Metal-organic frameworks (MOFs) materials have been extensively applied as precursors or templates for the synthesis of carbon, metal oxides/sulfides-based compounds as high-performance electrodes in supercapacitors. The MOFs-derived materials can be broadly divided into two groups: MOFs-derived porous carbon and MOFs-derived metal oxide/sulfide compounds. These MOFs-derived materials are characterized by unique porous structures, controllable structures, high surface area, good conductivity (MOFs-derived carbon) and outstanding electrochemical stability, meeting the requirements of the desirable specific capacitance and long-term cyclic performance of both electrochemical double layer capacitors and pseudocapacitors. However, MOFs-derived materials still suffer from the complex synthesis process and high production cost of MOFs precursors, difficulties in mass production, and unstable structure in highly corrosive electrolyte. In addition, the electrical conductivity of MOFs-derived metal oxides/sulfides needs to be further improved. In this review, we summarize the recent progresses in the development of MOFs-derived porous carbons and metal oxide/sulfide compounds and their applications in supercapacitors. The prospects and challenges of MOFs-derived carbon and metal oxide/sulfide compounds as highly effective and durable electrodes in supercapacitors are discussed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available