4.7 Article

Change Detection in Heterogeneous Optical and SAR Remote Sensing Images Via Deep Homogeneous Feature Fusion

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/JSTARS.2020.2983993

Keywords

Feature extraction; Synthetic aperture radar; Optical sensors; Remote sensing; Optical imaging; Semantics; Cost function; Change detection; heterogeneous; image style transfer (IST); remote sensing

Funding

  1. National Natural Science Foundation of China [61790551, 61925106]
  2. Civil Space Advance Research Program of China [D010305]

Ask authors/readers for more resources

Change detection in heterogeneous remote sensing images is crucial for disaster damage assessment. Recent methods use homogenous transformation, which transforms the heterogeneous optical and synthetic aperture radar (SAR) remote sensing images into the same feature space, to achieve change detection. Such transformations mainly operate on the low-level feature space and may corrupt the semantic content, deteriorating the performance of change detection. To solve this problem, this article presents a new homogeneous transformation model termed deep homogeneous feature fusion (DHFF) based on image style transfer (IST). Unlike the existing methods, the DHFF method segregates the semantic content and the style features in the heterogeneous images to perform homogeneous transformation. The separation of the semantic content and the style in the homogeneous transformation prevents the corruption of image semantic content, especially in the regions of change. In this way, the detection performance is improved with accurate homogeneous transformation. Furthermore, we present a new iterative IST strategy, where the cost function in each IST iteration measures and thus maximizes the feature homogeneity in additional new feature subspaces for change detection. After that, change detection is accomplished accurately on the original and the transformed images that are in the same feature space. Real remote sensing images acquired by SAR and optical satellites are utilized to evaluate the performance of the proposed method. The experiments demonstrate that the proposed DHFF method achieves significant improvement for change detection in heterogeneous optical and SAR remote sensing images in terms of both accuracy rate and Kappa index.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available