4.5 Article

Regulation of Glycolytic Oscillations by Mitochondrial and Plasma Membrane H+-ATPases

Journal

BIOPHYSICAL JOURNAL
Volume 96, Issue 9, Pages 3850-3861

Publisher

CELL PRESS
DOI: 10.1016/j.bpj.2009.02.026

Keywords

-

Categories

Funding

  1. Danish Natural Science Research Council [21-04-0542, 272-05-0110, 272-06-345]

Ask authors/readers for more resources

We investigated the coupling between glycolytic and mitochondrial membrane potential oscillations in Saccharomyces cerevisiae under semianaerobic conditions. Glycolysis was measured as NADH autofluorescence, and mitochondrial membrane potential was measured using the fluorescent dye 3,3'-diethyloxacarbocyanine iodide. The responses of glycolytic and membrane potential oscillations to a number of inhibitors of glycolysis, mitochondrial electron flow, and mitochondrial and plasma membrane H+-ATPase were investigated. Furthermore, the glycolytic flux was determined as the rate of production of ethanol in a number of different situations (changing pH or the presence and absence of inhibitors). Finally, the intracellular pH was determined and shown to oscillate. The results support earlier work suggesting that the coupling between glycolysis and mitochondrial membrane potential is mediated by the ADP/ATP antiporter and the mitochondrial F0F1-ATPase. The results further suggest that ATP hydrolysis, through the action of the mitochondrial F0F1-ATPase and plasma membrane H+-ATPase, are important in regulating these oscillations. We conclude that it is glycolysis that drives the oscillations in mitochondrial membrane potential.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available