4.5 Article

The Stability of Cellulose: A Statistical Perspective from a Coarse-Grained Model of Hydrogen-Bond Networks

Journal

BIOPHYSICAL JOURNAL
Volume 96, Issue 8, Pages 3032-3040

Publisher

CELL PRESS
DOI: 10.1016/j.bpj.2008.12.3953

Keywords

-

Categories

Funding

  1. United States Department of Energy and Center for Nonlinear Studies

Ask authors/readers for more resources

A critical roadblock to the production of biofuels from lignocellulosic biomass is the efficient degradation of crystalline microfibrils of cellulose to glucose. A microscopic understanding of how different physical conditions affect the overall stability of the crystalline structure of microfibrils could facilitate the design of more effective protocols for their degradation. One of the essential physical interactions that stabilizes microfibrils is a network of hydrogen (H) bonds: both intrachain H-bonds between neighboring monomers of a single cellulose polymer chain and interchain H-bonds between adjacent chains. We construct a statistical mechanical model of cellulose assembly at the resolution of explicit hydrogen-bond networks. Using the transfer matrix method, the partition function and the subsequent statistical properties are evaluated. With the help of this lattice-based model, we capture the plasticity of the H-bond network in cellulose due to frustration and redundancy in the placement of H-bonds. This plasticity is responsible for the stability of cellulose over a wide range of temperatures. Stable intrachain and interchain H-bonds are identified as a function of temperature that could possibly be manipulated toward rational destruction of crystalline cellulose.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available