4.6 Article

Classifying Single Stars and Spectroscopic Binaries Using Optical Stellar Templates

Journal

ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES
Volume 249, Issue 2, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.3847/1538-4365/aba1e7

Keywords

Astronomy software; Stellar classification; Spectroscopic binary stars; Carbon stars; White dwarf stars

Funding

  1. Alfred P. Sloan Foundation
  2. U.S. Department of Energy Office of Science
  3. Center for High-Performance Computing at the University of Utah
  4. Brazilian Participation Group
  5. Carnegie Institution for Science
  6. Carnegie Mellon University
  7. Chilean Participation Group
  8. French Participation Group
  9. Center for Astrophysics | Harvard Smithsonian
  10. Instituto de Astrofisica de Canarias
  11. Johns Hopkins University
  12. Kavli Institute for the Physics and Mathematics of the Universe (IPMU)/University of Tokyo
  13. Korean Participation Group
  14. Lawrence Berkeley National Laboratory
  15. Leibniz Institut fur Astrophysik Potsdam (AIP)
  16. Max-PlanckInstitut fur Astronomie (MPIA Heidelberg)
  17. Max-PlanckInstitut fur Astrophysik (MPA Garching)
  18. Max-Planck-Institut fur Extraterrestrische Physik (MPE)
  19. National Astronomical Observatories of China
  20. New Mexico State University
  21. New York University
  22. University of Notre Dame
  23. Observatario Nacional/MCTI
  24. Ohio State University
  25. Pennsylvania State University
  26. Shanghai Astronomical Observatory
  27. United Kingdom Participation Group
  28. Universidad Nacional Autonoma de Mexico
  29. University of Arizona
  30. University of Colorado Boulder
  31. University of Oxford
  32. University of Portsmouth
  33. University of Utah
  34. University of Virginia
  35. University of Washington
  36. University of Wisconsin
  37. Vanderbilt University
  38. Yale University

Ask authors/readers for more resources

Stellar spectral classification is a fundamental tool of modern astronomy, providing insight into physical characteristics such as effective temperature, surface gravity, and metallicity. Accurate and fast spectral typing is an integral need for large all-sky spectroscopic surveys like the Sloan Digital Sky Survey (SDSS) and the Large Sky Area Multi-Object Fiber Spectroscopic Telescope. Here, we present the next version of PyHammer, a stellar spectral classification software that uses optical spectral templates and spectral line index measurements. PyHammer v2.0 extends the classification power to include dwarf carbon stars, DA white dwarf stars, and also double-lined spectroscopic binaries (SB2). This release also includes a new empirical library of luminosity-normalized spectra that can be used to flux calibrate observed spectra or to create synthetic SB2 spectra. We have generated physically reasonable SB2 combinations as templates, adding the ability to spectrally type SB2s to PyHammer. We test classification success rates on SB2 spectra, generated from the SDSS, across a wide range of spectral types and signal-to-noise ratios. Within the defined range of pairings described, more than 95% of SB2s are correctly classified.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available