4.5 Article

Interplay between liquid crystalline and isotropic gels in self-assembled neurofilament networks

Journal

BIOPHYSICAL JOURNAL
Volume 95, Issue 2, Pages 823-835

Publisher

CELL PRESS
DOI: 10.1529/biophysj.107.127415

Keywords

-

Categories

Ask authors/readers for more resources

Neuro. laments (NFs) are a major constituent of nerve cell axons that assemble from three subunit proteins of low (NF-L), medium (NF-M), and high (NF-H) molecular weight into a 10 nm diameter rod with radiating sidearms to form a bottle-brush-like structure. Here, we reassemble NFs in vitro from varying weight ratios of the subunit proteins, purified from bovine spinal cord, to form homopolymers of NF-L or. laments composed of NF-L and NF-M (NF-LM), NF-L and NF-H (NF-LH), or all three subunits (NF-LMH). At high protein concentrations, NFs align to form a nematic liquid crystalline gel with a well-defined spacing determined with synchrotron small angle x-ray scattering. Near physiological conditions (86 mM monovalent salt and pH 6.8), NF-LM networks with a high NF-M grafting density favor nematic ordering whereas. laments composed of NF-LH transition to an isotropic gel at low protein concentrations as a function of increasing mole fraction of NF-H subunits. The inter. lament distance decreases with NF-M grafting density, opposite the trend seen with NF-LH networks. This suggests a competition between the more attractive NF-M sidearms, forming a compact aligned nematic gel, and the repulsive NF-H sidearms, favoring a more expansive isotropic gel, at 86 mM monovalent salt. These interactions are highly salt dependent and the nematic gel phase is stabilized with increasing monovalent salt.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available