4.8 Article

Rapid online learning and robust recall in a neuromorphic olfactory circuit

Journal

NATURE MACHINE INTELLIGENCE
Volume 2, Issue 3, Pages 181-191

Publisher

SPRINGERNATURE
DOI: 10.1038/s42256-020-0159-4

Keywords

-

Funding

  1. National Institute on Deafness and Other Communication Disorders [R01 DC014701, R01 DC014367]

Ask authors/readers for more resources

We present a neural algorithm for the rapid online learning and identification of odourant samples under noise, based on the architecture of the mammalian olfactory bulb and implemented on the Intel Loihi neuromorphic system. As with biological olfaction, the spike timing-based algorithm utilizes distributed, event-driven computations and rapid (one shot) online learning. Spike timing-dependent plasticity rules operate iteratively over sequential gamma-frequency packets to construct odour representations from the activity of chemosensor arrays mounted in a wind tunnel. Learned odourants then are reliably identified despite strong destructive interference. Noise resistance is further enhanced by neuromodulation and contextual priming. Lifelong learning capabilities are enabled by adult neurogenesis. The algorithm is applicable to any signal identification problem in which high-dimensional signals are embedded in unknown backgrounds. Integrating knowledge about the circuit-level organization of the brain into neuromorphic artificial systems is a challenging research problem. The authors present a neural algorithm for the learning of odourant signals and their robust identification under noise, based on the architecture of the mammalian olfactory bulb and implemented on the Intel Loihi neuromorphic system.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available