4.6 Article

Determining optical constants of 2D materials with neural networks from multi-angle reflectometry data

Journal

Publisher

IOP Publishing Ltd
DOI: 10.1088/2632-2153/ab6d5f

Keywords

classification; functional prediction; material characterization

Ask authors/readers for more resources

Synthetically generated multi-angle reflectometry data is used to train a neural network based learning system to estimate the refractive index of atomically thin layered materials in the visible part of the electromagnetic spectrum. Unlike previously developed regression based optical characterization methods, the prediction is achieved via classification by using the probabilities of each input element belonging to a label as weighting coefficients in a simple analytical formula. Various types of activation functions and gradient descent optimizers are tested to determine the optimum combination yielding the best performance. For the verification of the proposed method's accuracy, four different materials are studied. In all cases, the maximum error is calculated to be less than 0.3%. Considering the highly dispersive nature of the studied materials, this result is a substantial improvement in terms of accuracy and efficiency compared to traditional approaches.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available