4.1 Review

How to conjugate the stemness marker ALDH1A1 with tumor angiogenesis, progression, and drug resistance

Journal

CANCER DRUG RESISTANCE
Volume 3, Issue 1, Pages 26-37

Publisher

OAE PUBLISHING INC
DOI: 10.20517/cdr.2019.70

Keywords

Aldehyde dehydrogenase 1A1; angiogenesis; drug resistance; immune editing; metastases; stemness

Categories

Funding

  1. MIUR-PRIN [2017XP72RF]

Ask authors/readers for more resources

Cancer is the second leading cause of death worldwide. The survival of cancer patients depends on the efficacy of therapies and the development of resistance. There are many mechanisms involved in the acquisition of drug resistance by cancer cells, including the acquisition of stem-like features. Cancer stem cells (CSCs) represent a major source of tumor progression and treatment resistance. CSCs are a subpopulation of cancer cells having the abilities to self-renew and form spheres in vitro. Aldehyde dehydrogenase 1A1 (ALDH1A1) is a cytosolic enzyme involved in the detoxification of cells from toxic aldehydes and belongs to the ALDH family. High ALDH1A1 activity is closely related to stemness phenotype of several tumors, possibly contributing to cancer progression and diffusion in the body. We have documented the contribution of ALDH1A1 in tumor angiogenesis in breast cancer cells by the activation of hypoxia inducible factor-1 alpha and vascular endothelial growth factor signaling. This review discusses the involvement of ALDH1A1 in the development of different hallmarks of cancer to propose it as a novel putative target for cancer treatment to achieve better outcome. Here, we analyze the involvement of ALDH1A1 in the acquisition of stemness phenotype in tumor cells, the regulation of tumor angiogenesis and metastases, and the acquisition of anticancer drug resistance and immune evasion.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available