4.5 Article

2-Amino-1,3,4-thiadiazole derivative (FABT) inhibits the extracellular signal-regulated kinase pathway and induces cell cycle arrest in human non-small lung carcinoma cells

Journal

BIOORGANIC & MEDICINAL CHEMISTRY LETTERS
Volume 22, Issue 17, Pages 5466-5469

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.bmcl.2012.07.036

Keywords

2-Amino-1,3,4-thiadiazole; Anticancer activity; ERK1/2 pathway; Cell cycle arrest; p27/Kip1

Funding

  1. Ministry of Science and Higher Education (Poland) [N N401 223734]

Ask authors/readers for more resources

The anticancer potential of 2-amino-1,3,4-thiadiazole compounds has been documented by in vitro and in vivo studies. In our previous research, we described the synthesis as well as the antiproliferative and neuroprotective activities of 2-(4-fluorophenyloamino)-5-(2,4-dihydroxyphenyl)-1,3,4-thiadiazole (FABT). The aim of the present study was to investigate the molecular mechanisms involved in FABT-induced growth inhibition in A549 lung carcinoma cells. Western blotting analysis revealed that FABT inhibited the activation of the extracellular signal-regulated kinase 1/2 (ERK1/2) pathway, and Real-time PCR analysis showed no changes in the expression of P44ERK1 and CREB1 genes. Furthermore, FABT induced cell cycle arrest in the GO/G1 phase and enhanced p27/Kip1 expression. Our results suggest that FABT acts by inhibiting ERK1/2 pathway and cell cycle progression through G1 into S phase in A549 cells. Further studies are needed to completely explain the molecular mechanisms of anticancer action of this 2-aminothiadiazole derivative. (C) 2012 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available