4.6 Article

An efficient and robust exfoliated bentonite/Ag3PO4/AgBr plasmonic photocatalyst for degradation of parabens

Journal

RSC ADVANCES
Volume 10, Issue 27, Pages 16027-16037

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d0ra02455d

Keywords

-

Funding

  1. National Natural Science Foundation of China [21507098]
  2. Natural Science Foundation of Shanxi Province [201801D221340, 201801D121273]
  3. China Post-doctoral Science Foundation [2015M570240]
  4. Shanxi Science and Technology Development Plan [201903D321053]
  5. Shanxi Scholarship Council of China
  6. Shanxi Provincial Foundation for Leaders of Disciplines in Science, China
  7. National Program on Key Basic Research Project of China [2019YFC0408604]

Ask authors/readers for more resources

Efficient visible-light-driven heterojunction photocatalysts have attracted broad interest owing to their promising adsorption and degradation performances in the removal of organic pollutants. In this study, a mesoporous exfoliated bentonite (EB)/Ag3PO4/AgBr (30%) photocatalyst was obtained by stripping and exfoliating bentonite as the support for loading Ag3PO4 and AgBr. The particle size ranges of Ag3PO4 and AgBr were about 10-30 nm and 5-10 nm, respectively. The exfoliated bentonite could greatly improve the dispersion and adsorption of Ag3PO4 and AgBr, and significantly enhance the stability of the material during paraben photodegradation. 0.2 g L-1 methylparaben (MPB) was completely decomposed over the EB/Ag3PO4/AgBr (30%) in 40 min under visible light irradiation. In addition, the photocatalytic activity of EB/Ag3PO4/AgBr (30%) remained at about 91% after five recycling runs manifesting that EB/Ag3PO4/AgBr (30%) possessed excellent stability. Radical quenching tests revealed that holes (h(+)) and hydroxyl radicals (center dot OH) were the major radicals. They attacked the side chain on the benzene ring of parabens, which were gradually oxidized to the intermediates, such as benzoic acid, 3-hydroxybenzoic acid, 4-hydroxybenzoic acid, azelaic acid, and eventually became CO2 and H2O. The enhancement of photocatalytic activity and photo-stability could be ascribed to the stable structural characteristics, enlarged surface area, high absorption ability, and improved light absorption ability from loading Ag3PO4 onto EB. Meanwhile, the matched energy levels of Ag3PO4 and AgBr made the photoelectron-hole pairs separate and transfer effectively at the interfaces. As a result, the photocatalytic properties of EB/Ag3PO4/AgBr (30%) composites were enhanced.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available