4.6 Article

High recorded color rendering index in single Ce,(Pr,Mn):YAG transparent ceramics for high-power white LEDs/LDs

Journal

JOURNAL OF MATERIALS CHEMISTRY C
Volume 8, Issue 13, Pages 4329-4337

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d0tc00032a

Keywords

-

Funding

  1. National Natural Science Foundation of China [61975070, 51902143, 61971207, 61775088]
  2. Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)
  3. Key Research and Development Project of Jiangsu Province [BE2018062, BE2019033]
  4. Postgraduate Research & Practice Innovation Program of Jiangsu Province [KYCX18_2096, KYCX18_2097, KYCX18_2098, KYCX18_2099]
  5. Natural Science Foundation of Jiangsu Province [BK20191467]
  6. International S&T Cooperation Program of Jiangsu Province [BZ2019063]
  7. Special Project for Technology Innovation of Xuzhou City [KC19250]

Ask authors/readers for more resources

Transparent ceramics (TCs) are incredibly promising color converters for high-power white LEDs/LDs. However, the preparation process of multiple structured TCs with a high color rendering index (CRI) is a complicated technical challenge, and the inability of single-structured TCs to achieve a high CRI significantly limits their real applications. In this study, high quality single-structured Ce,(Pr,Mn):YAG TCs with wide peak'' and narrow peak'' red light emissions were designed and fabricated via a solid-state reaction and a vacuum sintering method. Compared with the emission spectra of Ce:YAG TC, the synchronous doping of Pr3+ and Mn2+ ions into Ce:YAG TC resulted in inhomogeneous broadening of the full width at half maximum (FWHM) from 91.7 nm to 102.2 nm. Impressively, the CRI of a single Ce,(Pr,Mn):YAG TC-based high-power white LED was as high as 84.8, and the correlated-color temperatures (CCTs) of the white LEDs/LDs were 5450 K and 3550 K, respectively. Furthermore, when the addition amounts of Pr3+ and Mn2+ were 0.2 at% and 0.8 at%, respectively, the as-prepared Ce,(Pr,Mn):YAG TC displayed a high quantum efficiency (IQE = 48.14%) and excellent color stability (only 5% fluctuation). Therefore, this study not only demonstrates how to overcome the spectrum deficiencies of single-structured TCs that restrain intrinsic CRI improvement, but also provides a reference for the pursuit of high luminescence properties. This work significantly reinforces the understanding of the CRI problems of TC-based high-power lighting, which is crucial for the real application of white LEDs/LDs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available