4.8 Article

Decomposition of Organometal Halide Perovskite Films on Zinc Oxide Nanoparticles

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 7, Issue 36, Pages 19986-19993

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsami.5b04695

Keywords

zinc oxide nanoparticles; perovskite solar cell; decomposition; buffer layer; poly(ethylenimine)

Funding

  1. Research Grants Council of the Hong Kong Special Administrative Region, China [21201514]
  2. CityU start-up grant [CityU-7200372, CityU-9610309]

Ask authors/readers for more resources

Solution processed zinc oxide (ZnO) nanopartides (NPs) with excellent electron transport properties and a low-temperature process is a viable candidate to replace titanium dioxide (TiO2) as electron transport layer to develop high-efficiency perovskite solar cells on flexible substrates. However, the number of reported high-performance perovskite solar cells using ZnO-NPs is still limited. Here we report a detailed investigation on the chemistry and crystal growth of CH3NH3PbI3 perovskite on ZnO-NP thin films. We find that the perovskite films would severely decompose into PbI2 upon thermal annealing on the bare ZnO-NP surface. X-ray photoelectron spectroscopy (XPS) results show that the hydroxide groups on the ZnO-NP surface accelerate the decomposition of the perovskite films. To reduce the decomposition, we introduce a buffer layer in between the ZnO-NPs and perovskite layers. We find that a commonly used buffer layer with small molecule [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM) can slow down but cannot completely avoid the decomposition. On the other hand, a polymeric buffer layer using poly(ethylenimine) (PEI) can effectively separate the ZnO-NPs and perovskite, which allows larger crystal formation with thermal annealing. The power conversion efficiencies of perovskite photovoltaic cells are significantly increased from 6.4% to 10.2% by replacing PC61BM with PEI as the buffer layer.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available