4.5 Article

LncRNA SNHG6 Inhibits Apoptosis by Regulating EZH2 Expression via the Sponging of MiR-101-3p in Esophageal Squamous-Cell Carcinoma

Journal

ONCOTARGETS AND THERAPY
Volume 13, Issue -, Pages 11411-11420

Publisher

DOVE MEDICAL PRESS LTD
DOI: 10.2147/OTT.S275135

Keywords

lncRNA SNHG6; miR-101-3p; EZH2; esophageal squamous-cell carcinoma; apoptosis

Funding

  1. Medical Science Research Project of Henan Province [2018020765]

Ask authors/readers for more resources

Background: The long non-coding RNA (lncRNA) SNHG6 was significantly upregulated in esophageal squamous-cell carcinoma (ESCC), and it promoted ESCC cell proliferation, invasion, and migration. However, the effects of SNHG6 on cell apoptosis and the corresponding underlying mechanisms have not yet reported. Methods: Apoptosis was detected by flow cytometric analysis. Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting were used for mRNA and protein quantification, respectively. A luciferase reporter assay was performed to verify downstream target genes for SNHG6 and miR-101-3p. Results: Dysregulation of SNHG6 inhibited apoptosis in ESCC cells and regulated the expression of apoptosis-related proteins such as Bcl-2, Mcl-1, Bax and Caspase-3. Functionally, miR-101-3p could compete binding with 3'-untranslated region of SNHG6 and downregulation of miR-101-3p reversed its effect on cell apoptosis in SNHG6 knockdown cells. EZH2 was confirmed as a downstream target gene of miR-101-3p, silencing EZH2 expression had the same effect on apoptosis and protein expression as knocking down SNHG6. Overexpression of EZH2 reversed the effects of miR-101-3p overexpression on cell apoptosis in ESCC cells. Conclusion: In this study, we found that upregulation of the lncRNA SNHG6 inhibited apoptosis via miR-101-3p/EZH2 axis in ESCC. These findings may contribute to the diagnosis and treatment of ESCC.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available