4.6 Article

Optimal sleep and work schedules to maximize alertness

Journal

SLEEP
Volume 44, Issue 11, Pages -

Publisher

OXFORD UNIV PRESS INC
DOI: 10.1093/sleep/zsab144

Keywords

mathematical models; neurobehavioral performance; shift work; sleep deprivation

Funding

  1. Military Operational Medicine Research Program of the U.S. Army Medical Research and Development Command, Fort Detrick, MD

Ask authors/readers for more resources

The study developed an optimization algorithm to identify sleep and work schedules that minimize alertness impairment during work hours, while reducing impairment during non-work hours. The algorithm showed promising results in reducing alertness impairment and optimizing sleep and work schedules for different experimental studies.
Study Objectives Working outside the conventional 9-to-5 shift may lead to reduced sleep and alertness impairment. Here, we developed an optimization algorithm to identify sleep and work schedules that minimize alertness impairment during work hours, while reducing impairment during non-work hours. Methods The optimization algorithm searches among a large number of possible sleep and work schedules and estimates their effectiveness in mitigating alertness impairment using the Unified Model of Performance (UMP). To this end, the UMP, and its extensions to estimate sleep latency and sleep duration, predicts the time course of alertness of each potential schedule and their physiological feasibility. We assessed the algorithm by simulating four experimental studies, where we compared alertness levels during work periods for sleep schedules proposed by the algorithm against those used in the studies. In addition, in one of the studies we assessed the algorithm's ability to simultaneously optimize sleep and work schedules. Results Using the same amount of sleep as in the studies but distributing it optimally, the sleep schedules proposed by the optimization algorithm reduced alertness impairment during work periods by an average of 29%. Similarly, simultaneously optimized sleep and work schedules, for a recovery period following a chronic sleep restriction challenge, accelerated the return to baseline levels by two days when compared to the conventional 9-to-5 work schedule. Conclusions Our work provides the first quantitative tool to optimize sleep and work schedules and extends the capabilities of existing fatigue-management tools.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available