4.7 Review

MicroRNAs in Control of Plant Development

Journal

JOURNAL OF CELLULAR PHYSIOLOGY
Volume 231, Issue 2, Pages 303-313

Publisher

WILEY
DOI: 10.1002/jcp.25125

Keywords

-

Ask authors/readers for more resources

In the long evolutionary history, plant has evolved elaborate regulatory network to control functional gene expression for surviving and thriving, such as transcription factor-regulated transcriptional programming. However, plenty of evidences from the past decade studies demonstrate that the 21-24 nucleotides small RNA molecules, majorly microRNAs (miRNAs) play dominant roles in post-transcriptional gene regulation through base pairing with their complementary mRNA targets, especially prefer to target transcription factors in plants. Here, we review current progresses on miRNA-controlled plant development, from miRNA biogenesis dysregulation-caused pleiotropic developmental defects to specific developmental processes, such as SAM regulation, leaf and root system regulation, and plant floral transition. We also summarize some miRNAs that are experimentally proved to greatly affect crop plant productivity and quality. In addition, recent reports show that a single miRNA usually displays multiple regulatory roles, such as organ development, phase transition, and stresses responses. Thus, we infer that miRNA may act as a node molecule to coordinate the balance between plant development and environmental clues, which may shed the light on finding key regulator or regulatory pathway for uncovering the mysterious molecular network. J. Cell. Physiol. 231: 303-313, 2016. (c) 2015 Wiley Periodicals, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available