4.7 Article

Chemokine (C-C Motif) Ligand 5 is Involved in Tumor-Associated Dendritic Cell-Mediated Colon Cancer Progression Through Non-Coding RNA MALAT-1

Journal

JOURNAL OF CELLULAR PHYSIOLOGY
Volume 230, Issue 8, Pages 1883-1894

Publisher

WILEY-BLACKWELL
DOI: 10.1002/jcp.24918

Keywords

-

Funding

  1. National Science Council of Taiwan [NSC 102-2628-B-037-002-MY3]
  2. Kaohsiung Medical University Hospital [KMUH102-2M24]
  3. Kaohsiung Medical University Aim for the Top Universities Grant [KMU-TP103C09]
  4. Excellence for Cancer Research Center Grant, Ministry of Health and Welfare, Executive Yuan, Taipei, Taiwan [MOHW103-TD-B-111-05]

Ask authors/readers for more resources

Tumor micro-environment is a critical factor in the development of cancer. The aim of this study was to investigate the inflammatory cytokines secreted by tumor-associated dendritic cells (TADCs) that contribute to enhanced migration, invasion, and epithelial-to-mesenchymal transition (EMT) in colon cancer. The administration of recombinant human chemokine (C-C motif) ligand 5 (CCL5), which is largely expressed by colon cancer surrounding TADCs, mimicked the stimulation of TADC-conditioned medium on migration, invasion, and EMT in colon cancer cells. Blocking CCL5 by neutralizing antibodies or siRNA transfection diminished the promotion of cancer progression by TADCs. Tumor-infiltrating CD11c(+) DCs in human colon cancer specimens were shown to produce CCL5. The stimulation of colon cancer progression by TADC-derived CCL5 was associated with the up-regulation of non-coding RNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT-1), which subsequently increased the expression of Snail. Blocking MALAT-1 significantly decreased the TADC-conditioned medium and CCL5-mediated migration and invasion by decreasing the enhancement of Snail, suggesting that the MALAT-1/Snail pathway plays a critical role in TADC-mediated cancer progression. In conclusion, the inhibition of CCL5 or CCL5-related signaling may be an attractive therapeutic target in colon cancer patients. J. Cell. Physiol. 230: 1883-1894, 2015. (c) 2014 Wiley Periodicals, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available