4.8 Review

Sodium transition metal oxides: the preferred cathode choice for future sodium-ion batteries?

Journal

ENERGY & ENVIRONMENTAL SCIENCE
Volume 14, Issue 1, Pages 158-179

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d0ee02997a

Keywords

-

Funding

  1. Australian Renewable Energy Agency (ARENA S4 project) grant
  2. National Natural Science Foundation of China [51772219, 51872209]
  3. Zhejiang Provincial Special Support Program for High-level Talents [2019R52042]
  4. Zhejiang Provincial Natural Science Foundation of China [LZ21E010001]

Ask authors/readers for more resources

The exploration of next-generation sodium-ion batteries (SIBs) aims to replace lithium-ion batteries and address the depletion of lithium resources. Sodium transition metal oxides are considered promising cathode materials with anionic redox activity. Research on anionic redox in Li-rich transition metal oxides provides insight into high-capacity cathode materials for SIBs, with challenges and strategies discussed. It is expected that this work will provide new perspectives on controlling anionic redox activity and finding novel high-capacity oxide cathode materials for SIBs.
The exploration of next-generation sodium-ion batteries (SIBs) is a worldwide concern to replace the current commercial lithium-ion batteries, mitigating the increasing exhaustion of Li resources. Sodium transition metal oxides are considered to be one of the most promising cathode materials for SIBs. The anionic redox reaction in Li-rich transition metal oxides is capable of providing extra capacity in addition to the cationic redox activities in lithium-ion batteries. A similar phenomenon exists in SIBs, which even applies to Na-deficient transition metal oxides. Moreover, transition metal oxides with mixed phase also demonstrate great potential. In this review, studies on anionic redox are first systematically introduced. The up-to-date advances on high-capacity transition metal oxide cathode materials for SIBs are then classified and summarized in different groups associated with or without anionic redox. The existing challenges as well as available solutions and strategies are discussed, and proposals with new insights are made at the end. It is expected that this work can provide new perspectives on controlling the anionic redox activity and finding novel high-capacity oxide cathode materials for SIBs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available