4.7 Article

Iodine-mediated cyclization of cannabigerol (CBG) expands the cannabinoid biological and chemical space

Journal

BIOORGANIC & MEDICINAL CHEMISTRY
Volume 26, Issue 15, Pages 4532-4536

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.bmc.2018.07.044

Keywords

Cannabigerol; Cannabinoids; Iodine; Natural products; Polyene cyclization

Funding

  1. Emerald Health

Ask authors/readers for more resources

Electrophilic attack to a double bond, the classic trigger of intramolecular isoprenoid cyclizations, is apparently silent in Cannabis and the diversity of the cannabinome can be ultimately traced to the oxidative cyclization of cannabigerolic acid (CBGA,1a), a process triggered by the generation of an aromatic electrophilic species. To expand the chemical space of the cannabinoid chemotype, we have investigated an oxidative trigger based on the addition of iodine to the terminal isoprenyl double bond of cannabigerol (CBG,1b), the decarboxylated and thermally stable version of CBGA (1a). Apart from the predictable product of an iodine-induced cascade cyclization (3), also a pair of unprecedented spiranes named spirocannabigerols (4a,b), derived from the formation of an edge-protonated cyclopropyl cation was also formed, along with a product (5) resulting from the incorporation, in a Friedel-Craft fashion, of the reaction solvent (toluene). Biological evaluation of these compounds on six thermo-transient receptor potential channels (TRPs) showed a remodeling of bioactivity compared to GBC, with emphasis on TRPA1 rather than TRPM8.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available