4.6 Article

Human-Exoskeleton Coupling Dynamics of a Multi-Mode Therapeutic Exoskeleton for Upper Limb Rehabilitation Training

Journal

IEEE ACCESS
Volume 9, Issue -, Pages 61998-62007

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/ACCESS.2021.3072781

Keywords

Exoskeletons; Training; Robots; Mathematical model; Torque; Dynamics; Stroke (medical condition); Human-exoskeleton coupling dynamics; parameter identification; rehabilitation training

Funding

  1. National Natural Science Foundation of China [61803265]
  2. Science and Technology Commission of Shanghai Municipality, China [20S31905400]

Ask authors/readers for more resources

The purpose of this study is to establish the human-exoskeleton coupling dynamic model of the upper limb exoskeleton and propose a dynamic parameter identification method suitable for patient training. The results show that the model has good prediction accuracy in both PAT and PPT modes, which helps provide different training effects and optimal assistance for stroke patients.
The purpose of this study is to establish the human-exoskeleton coupling (HEC) dynamic model of the upper limb exoskeleton, overcome the difficulties of dynamic modeling caused by the differences of individual and disease conditions and the complexity of musculoskeletal system, to achieve early intervention and optimal assistance for stroke patients. This paper proposes a method of HEC dynamics modeling, and analyzes the HEC dynamics in the patient-active training (PAT) and patient-passive training (PPT) mode, and designs a step-by-step dynamic parameter identification method suitable for the PAT and PPT modes. Comparing the HEC torques obtained by the dynamic model with the real torques measured by torque sensors, the root mean square error (RMSE) can be kept within 13% in both PAT and PPT modes. A calibration experiment was intended to further verify the accuracy of dynamic parameter identification. The theoretical torque of the load calculated by the dynamic model, is compared with the difference calculated by parameter identification. The trends and peaks of the two curves are similar, and there are also errors caused by experimental measurements. Furthermore, this paper proposes a prediction model of the patient's height and weight and HEC dynamics parameters in the PPT mode. The RMSE of the elbow and shoulder joints of the prediction model is 9.5% and 13.3%. The proposed HEC dynamic model is helpful to provide different training effects in the PAT and PPT mode and optimal training and assistance for stroke patients.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available